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Oscillations in the middle layer of a three-layer atmosphere induced by sources located in the lower layer are investigated. In 
every layer the Brunt-Vfiis~ilfi frequencies are constants and increase with height. The general solution obtained by the methods 
of integral transforms is presented in the form of series. It is shown that, up to terms O(t-1), only a finite number of terms of the 
series make a fundamental contribution to the asymptotic form as t ~ oo. The asymptotic form is investigated by standard methods 
of the theory of asymptotic estimates of integrals. © 2004 Elsevier Ltd. All rights reserved. 

1. S T A T E M E N T  AND F O R M A L  S O L U T I O N  OF T H E  P R O B L E M  

Consider an ideal atmosphere that fills three-dimensional space and is split into three layers, with Brunt-  
Vfiisfilfi (BV) frequencies that are constant in each layer. We will choose the length and time scale in 
such a way that the thickness of the middle layer and BV frequency is equal to unity. It is assumed that 
N1 < N2 < N3, where Na is the BV frequency in the lower layer, N2 = 1, and N3 is that in the top layer. 
Previously [1] the less realistic case when N1 = N3 # 1 was considered. (It is well known that in the 
actual atmosphere the BV frequency increases with height.) The origin of a Cartesian system of coordin- 
ates is chosen on the lower boundary of the middle layer. Point or distributed sources are located in 
the lower layer. 

In the linear formulation the solution of the problem of internal waves produced by these sources 
is expressed in terms of various convolutions over spatial variables with a continuous and bounded 
solution of the equation with piecewise-constant coefficients. 
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+ N k A 2 w  = Q ' ( t ) ~ ( x ) ~ ( y ) 6 ( z  + c),  k = 1, 2,3 (1.1) 

The function Q(t) is continuously differentiable and finite with a support at [0, T], c > 0. 
The solution of problem (1.1) was obtained in [1] by the method of integral transforms. In the middle 

layer the disturbances are given by the formula 

T +~C+ i~ 

= l~ !Q('c) I I q~(u'P'Z)J°(ru)eP(t-X)dudpdx' 0 < z < l  (1.2) w 3i 
16 o c-i= 

where 

q~(u, p, z) = -e  -"vc/p ([5 + 03)e u°~(l -z)/.  _ ([5 - 03)e -u°~(l -z)/p 
(~ + 0))(03 + y)e u°~/p + (~ - 0))(03 - "[)e  -u°J/p (1.3) 

2 2 = ~ + p (1.4) 0)= f~+p2,  1 3 = ~ 3 2 + p ,  ~' 2 2 

It is well known that the middle layer acts as a waveguide. Oscillations produced by a source can 
disrupt the functions of the waveguide. 

In a similar way we can write formulae for disturbance in the upper and lower layers. 
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2. T R A N S F O R M A T I O N  OF T H E  S O L U T I O N  

Arguments similar to those above [1] show that when u > 0, Rep ~ 0 the denominator of the function 
q~ cannot vanish. If we use the fact that N1 < 1 < N3, it turns out that when Rep = 0 the denominator 
of the function q) can only vanish at the pointsp = +i, but at these points the numerator also vanishes. 
The function q~ has finite limits as x ~ _+i and can be assumed to be continuous at these points. By 
virtue of Cauchy's theorem one can change to integration over the imaginary axis in formula (1.2). If 
the function q0 is represented in the form of a difference, the integral can be represented in the form 
of a difference of two integrals, taken in the sense of the principal value. At complex-conjugate points 
of the imaginary axis the integrand in formula (1.2) takes complex-conjugate values. If when t > T we 
replace the functionf(p, t) in formula (1.2) byf(-p,  t), its right-hand side vanishes by virtue of Cauchy's 
theorem. All this enables us to write formula (1.2) in the form 

T +~+i~  

w = 1 ~ImfQ(x) I ~ 9(u,  p, Z)Jo(ru)chp( t -"c)dudpd'c  
41t ~ 

0 0 0 

(2.1) 

Using formulae (1.3) and (1.4) we obtain 

~ ( u , p , z )  = 
n = 0  

n = 0  

(2.2) 

1 A(p )  - o ~ - y  ~ - o 3  (2.3) 
C(p)  = o~+y'  o3+y'  B(p)  - ~+o3 

Substituting expression (2.2) into formula (2.1), using formulae (1.4) and evaluating the integrals over 
the variable u, we obtain 

W -~ W I - - W  2 

T 

Wl = , 1 3 i Q ( x ) ~ l ( r  ' z, t -  "~)d'c (2.4) 
41~ 0 

T 

w 2 = -~ l  ~fQ(x)~2(r,  2 - z, t - x)dx 
e4K 0 

where 

F,(q) = qC( iq )an( iq )Bn( iq )  

f ( q , r , z )  = r2q2 -g2 (q , z ) ,  g (q , z )  = z ~ / 1 - ~  + c ~ [ - ~ l - q  2 

(2.5) 

The expression for the function qb2(r, z, t) is obtained by substituting the coordinate 2 - z  for z in formula 
(2.5) and multiplying the integrand by B(iq). 

The function f(q, r, z + 2n) vanishes only when 

rq = g(q, z + 2n), 

To solve Eq. (2.6), we put 

Njsincp = / N-~-q2, 
1 - q  2 

0 < q < N 1 (2.6) 

0 < ~p 5 rt N - N1 (2.7) 
2 

2' J1 - N  1 
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Expressing q from this formula and substituting the result into Eq. (2.6), we obtain 

q(q0) - Ncos(p , rNcos(p-csin~p = z + 2n (2.8) 
ffl + N2cos2qo 

Assuming 

R = ~ 2 ,  rN = Rsinc~, c = Rcosc~ 

we write Eq. (2.8) in the form 

sin(or- cp) = (z + 2n)/R (2.9) 

Equation (2.9) can have a solution only when z + 2n/R ~< 1. Assuming this condition is satisfied, we 
put 

sin(13(z, r)) = z/R, 0<13_<n/2 (2.10) 

The solution of Eq. (2.9) can fall in the interval [0, re/2] only in the case when 0 ~< ~(z + 2n, r) ~< 
and q0(z, r) = ~ - 13(z, r). 

From Eqs (2.9) and (2.10) it follows that the inequality sin(13(z + 2n, r)) ~< s ins  is equivalent to the 
inequality z + 2n <~ r/N, which imposes restrictions on the number n 

n<<_n(r,z) = [rN/2-z /2]  (2.11) 

(here [x] is the integer part of the number n). 
Let us put 

q~(r, z) = q(q),(r, z)), %(r, z) = q0(r, z + 2n) 

If condition (2.11) is satisfied, the functionf(r, z + 2n, t) ~< 0 within the interval [0, qn(r, z)] by virtue 
of relations (2.7) and (2.5). Hence, in this interval the integrand in formula (2.5) vanishes. In the interval 
IN3, + ~ ]  the functionf(r, z + 2n, t) ~> 0, the function C(iq) takes imaginary values, whereas the functions 
A(iq) and B(iq) take real values. Therefore, in this interval the integrand in formula (2.5) also vanishes. 
From this it follows that the integration in formula (2.5) with respect to the variable q is actually carried 
out in the interval [qn(r, z), N3]. 

Let us split the interval of integration into the intervals [qn(r, z), N1] and [N1, N3]. The first of these 
intervals exists only if condition (2.11) is satisfied, and hence formula (2.5) can be rewritten in the form 

Fn( q )c°_~s_( qt)dq x-. n r F,(q)cos(qt)dq 
" i  (r 'z ' t )  = ~ ,  Req . (~ l , / f ( q , r , z+  + 2., t ( e j  . . . . .  

=o , n=O u , ' / f ( q ' r ' z + 2 n )  
(2.12) 

3. A S Y M P T O T I C  F O R M U L A E  AS t --~ 

As is well known from general theory [2], the asymptotic form of integrals is determined by stationary 
and end points, as well as by points where the regularity of the integrand breaks down. We will confine 
ourselves to two terms of the asymptotic series, namely, the terms of order t -1/2 and t -1. The terms of 

;~de2th2a~,redtte;em;ned?Yrdhe~ tnd,P~lientcoqnt ApP~yi2 g t h e  stt~n~;~dtqnetthtd~22t;f;~on~Ul~o(22 2 {' t~e e 

function Oz is equal to 

~ n ( r ,  z )  

• l (r ,z , t )  = (-1) Fn(r,z)cos qn(r,z)t+ 
n = 0  

Fn(r,z ) = 
• I z  , n . 

qnC(lqn)A (tqn)B (tqn) 

~/~f(qn(r, z), r, z + 2n)/bq 

(3.1) 
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Introducing the notation 

+ 

~-(r ,z )  = 1 + Nlsin(q)n(r,z)) 

2 . 2 )~(r, z) = Nl(r2 + (z + 2n)2 + c2)sing)n + c(z + 2n)(1 + N l s m  ~%) 

+ 2 + 2 N21__JI_NI B-(r, z) = JN3~I ~! + 2 

after simple calculations we obtain 

N 
qnC(iqn) = -"~COStPn' A(iqn) = ~t+, 

Of(qn(r, Z), r, z + 2n) 2~(r, z) coStPn 

0q s i n g n g + ~  - 

B(iq,) = 

N s~2(Pn - )n+l l4( l l l+)-n-3 /4(B-)  n 
Fn(r, z) - - ~ - - - ~ ( V  tB+) 

B-(r,z) 

B+(r, z) 

Substituting expressions (3.1) into formula (2.4), we arrive at the estimate 

T 

f .  4t - ~ \ 4t 
r (3"2/ 

!Q('c){::S}(q,(r,z)"c) d'c= D,(r , z ) f : i °S}(p , (r , z ) )  

Substituting expressions (3.1) and (3.2) into formula (2.5), we obtain, to an accuracy of O(t-3/2), 

n(r,z) 

_ _  1 l DnFnC°S(qn(r'z)t+p"(r'z) 4) WI 4rt5~2^/~ ~ (-1) n+ + 
,',t • n = 0 

A similar estimate of the function w2 is obtained by substituting 2 - z for z and (B-/B+)F~ for F~. 
Up to terms O(t-3/2), the contributions from the points N1 and N3 to the asymptotic form of the function 

q~l can be found by integration by parts. In this case it turns out that these contributions are equal to 
zero. 
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